
Collisions and spheres 1

🏩
Collisions and spheres

The main problem
when we represent objects in computer graphic the actual representations are seen as
a set of polygones, like triangles for meshes. the big problem arrives when we want to
compute the interception between two objects, maybe also in movement. there are 2
main problemns related to this computation:

the objects moves discretely, this means that we cannot compute a “single point
collision” as soon as we obtain the collision, but we could find ourselves with a
collision when it’s already too late

Collisions and spheres 2

to compute a collision we have to manually check every triangle, bringing us to a
complexity of , in the simple case of two objects with n triangles

each (simple yes, but always not good)

Bounding volumes hierarchies
🎱 Acceleration data structures

O(n)
n =#tri of obj ii

∏ i

O(n)2

https://www.notion.so/Acceleration-data-structures-31e5bb1659fc43979090d44e64f2ab61?pvs=21

Collisions and spheres 3

one possible solution is to use bounding boxes, in this way we can compute a “pre-
collision test” between the bboxes of the objects, and only proceed in a tree-like
structure until we reach a single mesh or we discover we are in a false positive

bool checkCollision(BV A, BV B)
 if A and B are Leaves then
 return checkPolygons(Polygon of A, Polygon of B)
 else
 for all the Children Ai of A do
 for all the Children Bi of B do
 if(overlap (Ai , Bi))
 return checkCollision(Ai , Bi)
 return false

Inner spheres trees
The main idea behind inner spheres is to
build a tree of spheres inside the object,

Collisions and spheres 4

instead of approaching from the outside
with the Bboxes

now the problem is only: How do we pack the spheres? they need to take the biggest
possible space into the object, be all inside it and not overlap, neiderthenless, the
computation must be as fast as possible, efficient and light(no, we are not asking too
mutch ndr)

Basic idea
the first idea is to take a point inside the object, and start creating a sphere until it
touches an edge, then move it if possible until it’s not possible anymore to enlarge the
radius, at that point we move to the next sphere and so on, until we are satisfied

Problem: where do we need to place our centers? it’s not immediate, since we could
take any point, but we cannot be sure that the distribution is optimal. a solution is to
create a voronoi diagram of the inside with the verteces, then plce the spheres on the
verteces of the voronoi with the highest nodes count

Collisions and spheres 5

the algorithm can also be parallelized , by subdividing the geometry space into a grid
and then taking random start points from inside each cell

after creating the sphere tree for the objects, all we need to do is creating a hierarchy
for storing them as a tree. the idea here is to create outer speres that includes the inner
one(conceptual) and then other spheres that contains the inner ones

Collisions and spheres 6

Use for collision detection

Collisions and spheres 7

all we need to do now is to traverse the sphere trees to check for collisions, like for the
bounding boxes and apply forces and torques to the objects in order to repel the
collision

Collisions and spheres 8

lemma
A single sphere intersects a constant number of disjoint spheres with at least the
same radius

Theorem
The maximum number of intersecting pairs of spheres of two polydisperse sphere
packings and with spheres is

for each sphere 𝐬 ∈ 𝐁:
 Compute hierarchy level 𝐥
 for all levels 𝐥 ≤ 𝐥𝐢 ≤ 𝐥𝐦𝐚𝐱:
 for all cells 𝐜𝐣 in level 𝐥𝐢 overlapped by 𝐬
 for all spheres 𝐬𝐤 ∈ 𝐜𝐣
 Compute overlap volume for 𝐬 and 𝐬k

the maximum complexity is , where is the number of spheres, all the rest is
. if the algorithm is parallelyzed the complexity becomes

s A

A B n O(n)

O(n) n

O(1) O(1)

Collisions and spheres 9

